Padronização de Dot-DIA para detecção de imunoglobulina G sérica ANTI-*Toxoplasma gondii*

MOUTA-CONFORT, E.1; ALVES, A. S.2; AMENDOEIRA, M. R. R.2

RESUMO

A detecção de imunoglobulinas (Ig) em soros de indivíduos com suspeita de infecção por *T.gondii* é usualmente obtida através de ensaios imunoenzimáticos (ELISA) e pela Reação de Imunofluorescência Indireta (RIFI). Tais métodos requerem o uso de equipamentos específicos, elevando assim o custo operacional destes ensaios.

Este estudo visa padronizar e avaliar uma metodologia que utiliza matriz de nitrocelulose como suporte para o antígeno e imunoglobulina G (IgG) marcada com corante têxtil como anticorpo secundário. Reações positivas podem ser facilmente evidenciadas pelo aparecimento de cor no local da aplicação do antígeno. Acreditamos que esta técnica poderá vir a ser mais uma opção, com custo reduzido, para o diagnóstico laboratorial da toxoplasmose.

Introdução

O *Toxoplasma gondii* (*T.gondii*), agente etiológico da toxoplasmose, é um protozoário intracelular que possui distribuição cosmopolita, infectando grande variedade de vertebrados, entre aves e mamíferos, incluindo o homem (AMENDOEIRA, 1997; FERRARONI & MARZOCHI, 1980; SANCHEZ, 1989; REY, 1991). A infecção humana é geralmente avaliada pela presença de anticorpos séricos contra o parasita. A infecção aumenta sua freqüência de acordo com a idade do paciente. Desse modo, observase uma prevalência elevada em indivíduos adultos. No Brasil, a soropositividade neste grupo varia entre 50% e 80%, diferindo nas várias localidades estudadas (JAMRA, 1964; GUIMARÃES *et al.*, 1993).

^{1.} Laboratório de Imunodiagnóstico – DCB – ENSP / FIOCRUZ

 $^{^{2}}$ Departamento de protozoologia – IOC – FIOCRUZ / NUDES Fundação Técnico-Educacional Souza Marques

A transmissão do parasita para o homem pode ocorrer por via oral, via transplacentária ou mais raramente por transplante de tecido ou órgãos. A contaminação oral se dá através da ingestão de alimentos contendo oocistos eliminados junto às fezes de gatos, ou pela ingestão de carnes mal cozidas provenientes de animais infectados com *T. gondii* e que apresentam cistos do parasita (JACOBS & MELTON, 1957; AMATO NETO *et al.*, 1963; CAMARGO, 1995).

Em indivíduos adultos e imunocompetentes, a toxoplasmose é uma infecção geralmente assintomática ou de manifestações com pouca expressão clínica. A doença e o seu diagnóstico assumem especial importância em imunodeficientes, mulheres gestantes e em neonatos com infecção congênita. O diagnóstico laboratorial da toxoplasmose pode ser realizado através de pesquisa do parasita, pesquisa de antígenos parasitários ou de anticorpos séricos anti-T.gondii. A pesquisa do parasita se faz a partir de sangue ou de biópsias de tecidos comprometidos, obtendo-se o isolamento por inoculação em camundongos ou em cultivo de células. Antígenos e complexos imunes de antígenos parasitários podem ser detectados no soro, urina e em cortes de tecidos. Todavia, a pesquisa de anticorpos séricos é a metodologia usualmente utilizada para o diagnóstico laboratorial da toxoplasmose, em virtude da relativa facilidade destas técnicas quando comparadas com as de pesquisa do parasita e de antígenos parasitários. Vários testes sorológicos podem ser realizados com esta finalidade, sendo os testes enzimáticos e a Reação de Imunofluorescência Indireta (RIFI) os mais utilizados na atualidade na rotina laboratorial, devido à elevada sensibilidade e especificidade observadas. IgM, IgG, IgA e IgE podem ser detectadas na toxoplasmose recém adquirida; altos títulos de IgM combinados a títulos de IgG são indicativos de infecção recente, sendo de especial importância a detecção e quantificação destas classes de Igs para o diagnóstico laboratorial da toxoplasmose.

Com o objetivo de simplificar e reduzir custos, uma grande variedade de modificações das técnicas imunoenzimáticas têm sido descritas. Usando-se matriz de nitrocelulose como suporte para o antígeno, anticorpos marcados com partículas coloidais tais como ouro, prata e corantes podem ser usados como uma alternativa aos conjugados enzimáticos (MOREMANS *et al.*, 1984; PENNEY *et al.*, 1989; KASHIWAZAKI *et al.*, 1994) A utilização de corantes têxteis para testes em papel de nitrocelulose, dot-dye immunoassay (dot-DIA) foi descrita por SNOWDEN e HOMMEL (1991), sendo também empregada com su-

cesso no diagnóstico da esquistossomose mansônica por RABELO *et al.*(1992 e 1993).

Neste estudo apresentamos resultados preliminares da padronização da técnica de dot-DIA como método de triagem sorológico para toxoplasmose.

Materiais e Métodos

Soros

Foram utilizados 10 soros reatores na imunofluorescência indireta e em teste enzimático (ELISA) e 10 soros não reatores para estas técnicas como controle negativos. Os soros foram diluídos a partir de 1:16 até 1:1024 (utilizando-se fator 4) em PBS com 0,05% de Tween 20% e com 5% de leite desnatado.

Antígeno

Usou-se como antígeno (Ag) sobrenadante de taquizoítas de *T.gondii* rompidos por congelamento e descongelamento, centrifugados a 14000 g e aplicado em tiras de membrana de nitrocelulose em volume de 100 ml e em concentrações de 0,3 a 100 mg de proteína por ml de solução. No preparo das diferentes concentrações de antígeno, utilizou-se tampão fosfato (PBS) pH 7,2. As tiras de nitrocelulose foram inicialmente embebidas em PBS e após a aplicação do antígeno com aparelho de hibri-dot (Bio-Rad), foram secas ao ar à temperatura ambiente ou a 37°C por 30 minutos. Para bloqueio dos sítios livres usou-se solução de leite desnatado a 5% diluído em PBS com 0,05% de Tween 20. Após o bloqueio as tiras podem ser imediatamente utilizadas ou após secagem estocadas a temperatura ambiente para posterior utilização.

Preparação do conjugado

A preparação do conjugado realizou-se segundo a metodologia descrita por SNOWDEN e HOMMEL (1991).

Corante

Uma suspensão 5% (p/v) de corante "vermelho samaron" (Hoescht) em água destilada foi lavada 4 (quatro) vezes a 20000 g por 30 minutos. Após a última lavagem, o sedimento foi diluído no volume inicial de água. A suspensão foi então submetida a nova centrifugação a 125g por 30 minutos para retirar os agregados. Ao sobrenadante adicionou-se timerosol a 0,01%. A concentração do corante a ser usado foi determinada a partir de uma solução do corante em etanol cuja absorbância a 510 nm seja igual a 1 ($A_{max 510nm}$ =1), usando-se para conjugação com imunoglobulina, a suspensão aquosa correspondente (A_1) ou múltiplos desta solução (An).

Conjugação

O conjugado anti-IgG - corante foi preparado por adição de diferentes concentrações do corante (A₁₀, A₂₀ e A₄₀) a concentrações variadas de imunoglobulina G (IgG) anti-humana (1, 2 e 4 mg/ml de IgG), em solução NaCl 2,7mM tamponada com fosfato 10 mM, pH 7,4 por 1 (uma) hora a temperatura ambiente. À mistura, juntou-se V/5 de solução a 30% de soro albumina bovina (BSA) em solução 5mM de NaCl pH 7,4 deixando-se por mais uma hora. O reagente IgG/corante foi centrifugado a 12000 g por 30 minutos, o sedimento diluído em volume igual ao original da imunoglobulina, em solução de BSA a 5% em fosfato a 33mM e NaCl a 125mM, pH 7,4, conservando-se a 4°C.

Reação

A reação foi realizada por incubação das tiras de nitrocelulose adsorvidas com o antígeno e os soros diluídos, por 1 (uma) hora a temperatura ambiente com agitação constante; seguiram-se 5 lavagens com PBS Tween 20 a 0,05%. Após as lavagens, as tiras de nitrocelulose foram incubadas com o conjugado (IgG/corante), por 30 minutos a temperatura ambiente; o bloqueio da reação se faz por imersão das tiras em água. A positividade do teste é detectada através do aparecimento de cor. Para a padronização das reações. Usou-se titulação em bloco com variações da concentração do antígeno, dos soros e do conjugado. Considerou-se como melhor concentração de trabalho dos reagentes aquelas nas quais observou-se boa reatividade para os soros positivos em diluições elevadas e ausência de reatividade nos soros negativos em todas as diluições.

Resultados

A concentração de antígeno que apresentou melhor resultado com os soros estudados foi a de 100 mg de proteína por ml de solução. A concentração do conjugado-corante com melhor desempenho nos resultados foi aquele no qual utilizamos o corante A_{20} e a Imunoglobulina G anti-humana na concentração de 1 mg/ml (Figura 1). Nestas condições os soros positivos aparecem com coloração bem definida enquanto que os soros controles normais não apresentaram coloração ou leve coloração que não interferiu com a interpretação do resultado.

soros	DILUIÇÃO	soros	DILUIÇÃO
P O S I T I V O S	1:16	N E G A T I V O S	1:16

Dot-DIA com soros de indivíduos com reação positiva em ELISA e imunofluorescência indireta para toxoplasmose. Corante em diluição A20, anti-imunoglobulina humana (IgG) em concentração de 1mg/ml e antígeno usado em concentração de 25mg/ml.

Conclusão

O estudo da prevalência da infecção por Toxoplasma gondii é baseado na pesquisa de anticorpos séricos. A detecção de IgG sérica é uma das ferramentas utilizadas nestes casos, assumindo também grande relevância em estudos soroepidemiológicos, uma vez que a presença de IgG, detectada por testes sorológicos, é suficiente para estabelecer que um paciente foi infectado.

Neste trabalho descrevemos a padronização da metodologia de dot-DIA para detecção de IgG sérica anti-Toxoplasma. Para tanto, os fatores que poderiam interferir no teste de dot-DIA tais como: o tipo e a concentração do antígeno, a solução bloqueadora, a concentração do corante, a diluição do soro, o tempo de incubação e a temperatura foram analisadas e adequadas a ensaios de detecção de IgG específico anti-T.gondii.

Uma vez padronizado, o teste é de fácil execução, realizando-se em pequeno espaço de tempo, cujos reagentes constituem-se em tiras de nitrocelulose previamente adsorvidas com o antígeno e já bloqueadas, solução de conjugado(IgG/corante), tampão de diluição do soro e tampão de lavagem. O desenvolvimento do teste e a observação da positividade da reação não requer a utilização de equipamentos, podendo-se acompanhar pelo aparecimento de cor.

Acreditamos que as vantagens dot-DIA relativas, baixos custos e facilidades operacionais frente aos testes atualmente utilizados apontam para sua utilização como teste de triagem em laboratórios e em condições de estudos de campo. Todavia, para uma real avaliação do desempenho do teste, um maior número de soros deve ser analisado para que possam ser calculados diferentes parâmetros sorológicos.

REFERÊNCIAS BIBLIOGRÁFICAS

- AMATO NETO, V.; COTRIN, J.X.; LAUS, W.C. & GOMES, M.C.O. Nota sobre o encontro do *Toxoplasma gondii* em sangue destinado à transfusão. *Rev. Inst. Med. Trop. São Paulo*, 5: 68-69, 1963.
- AMENDOEIRA, M.R.R. Toxoplasmosis Reseach aproach. *Mem. Inst. Oswaldo Cruz*, suppl. I RT 06,1997
- CAMARGO, M.E.; ANTUNES, C.M. F. & CHIARI, C. A. Epidemiologia da infecção por *Toxoplasma gondii* no município de Ribeirão das Neves, MG. I- Importância dos animais domésticos como fonte de infecção do *T.gondii* para o homem. *Rev* . *Soc. Bras. Med. Trop.*, 28: 211-214, 1995.
- FERRARONI, J.J. & MARZOCHI, M.C.A., Prevalência da infecção pelo *Toxoplasma gondii* em animais domésticos, silvestres e grupamentos humanos da Amazônia. *Mem. Inst. Oswaldo Cruz*, 75: 99-109, 1980.
- GUIMARÃES, A.C.S.; KAWARABAYASHI, M.; BORGES, M.M.; TOLEZANO, J.E. & ANDRADE JR., H.F. Regional variation in toxoplasmosis seronegativity in the São Paulo metropolitan region. *Rev. Inst. Med. Trop. São Paulo*, 35: 479-483, 1993.
- JACOBS, L.& MELTON, M.L. A procedure for testing meat samples for *Toxoplasma*, with preliminary results of a survey for pork and beef samples. *J. Parasitol.*, 43: (suppl.) 38-39, 1957.
- JAMRA, L.M.F. Contribuição para a epidemiologia da toxoplasmose. Inquérito em 100 famílias de uma área da cidade de São Paulo. São Paulo, 1964. Tese (Doutorado em Medicina) Universidade de São Paulo, USP.
- KASHIWAZAKI, Y.; SNOWDEN, K.; SMITH, D.H.; HOMMEL, M.A. Multiple antigen detection dipstick colloidal dye immunoassay for the field diagnosis of *trypanosome* .infections in cattle. *Veterinary Parasitology*, 55 (1-2): 57-69, 1994.
- MOREMANS, G.; DANEELS, G.; VAN DIJCK, A.; LANGANGER, G.; DE MEY, J. Sensitive visualization of antigen-antibody reaction in dot and blot immune overlay assays with immunogold and immunogold / silver staining. *Journal of Immunological Methods*, 74: 353-360, 1984.
- PENNEY, C.L.; GAULDIE, J.; EVELEGH, M. Polycarbonate Membrane: a novel surface for solid phase determinations with utility in field format serological assays. *Journal of Immunological Methods*, 123: 185-192, 1989.
- RABELO, A.L.T.; DIAS NETO, E.; GARCIA, M.M.A.; DIAS NETO, E. Dot-dye immunoassay for diagnosis of shistosomiasi mansoni. *Mem. Inst. Oswaldo Cruz*, 87 (2): 187-190, 1992.
- RABELO, A.L.T.; GARCIA, M.M.A.; DIAS NETO, E. Dot-dye-immunoassay and dot-ELISA for the serological differentiation of acute and chronic shistosomiasis mansoni using keyhole limpet haenocyanin as antigen. *Transaction of the Royal Society of Tropi*cal Medicine and Hygiene, 87: 279-281, 1993.

- REY, L. Parasitologia: Parasitos e doenças parasitárias do homem das Américas e da África. 2 ed. Rio de Janeiro : Guanabara Koogan, 1991. 731 p.
- SNOWDEN, K. & HOMMEL, M. Antigen detection immunoassay using dipstick and colloidal dyes. Journal of Immunological Methods, 140: 57-65, 1991.
- SANCHEZ, R.M.; HERNANDEZ, M.S. & CARVAJALES, A. F. Aspectos seroepidemiologicos de la toxoplamosis en 2 municípios de la Provincia de Ciego de Avila. Rev. Cubana Med. Trop., 41: 214-225, 1989.